Complex Analysis: Final Exam

Aletta Jacobshal 02, Wednesday 1 February 2017, 18:30-21:30
 Exam duration: 3 hours

Instructions - read carefully before starting

- Write very clearly your full name and student number at the top of the first page of your exam sheet and on the envelope. Do NOT seal the envelope!
- Solutions should be complete and clearly present your reasoning. If you use known results (lemmas, theorems, formulas, etc.) you must explicitly state and verify the corresponding conditions.
- 10 points are "free". There are 6 questions and the maximum number of points is 100 . The exam grade is the total number of points divided by 10.
- You are allowed to have a 2-sided A4-sized paper with handwritten notes.

Question 1 (15 points)

Evaluate

$$
\mathrm{pv} \int_{-\infty}^{\infty} \frac{1}{(x-1)\left(x^{2}+1\right)} d x
$$

using the calculus of residues.

Solution

By definition,

$$
\begin{aligned}
I & =\mathrm{pv} \int_{-\infty}^{\infty} \frac{1}{(x-1)\left(x^{2}+1\right)} d x \\
& =\lim _{\substack{R \rightarrow \infty \\
r \rightarrow 0^{+}}}\left(\int_{-R}^{1-r} \frac{1}{(x-1)\left(x^{2}+1\right)} d x+\int_{1+r}^{R} \frac{1}{(x-1)\left(x^{2}+1\right)} d x\right) \\
& =\lim _{\substack{R \rightarrow \infty \\
r \rightarrow 0^{+}}} I_{R, r} .
\end{aligned}
$$

To compute this integral we consider the closed contour

$$
C_{R, r}=\gamma_{R, r}+S_{r}^{+}+\delta_{R, r}+C_{R}^{+}
$$

shown below.

We have

$$
\begin{aligned}
I_{R, r} & =\int_{-R}^{1-r} \frac{1}{(x-1)\left(x^{2}+1\right)} d x+\int_{1+r}^{R} \frac{1}{(x-1)\left(x^{2}+1\right)} d x \\
& =\left(\int_{\gamma_{R, r}}+\int_{\delta_{R, r}}\right) f(z) d z
\end{aligned}
$$

where

$$
f(z)=\frac{1}{(z-1)\left(z^{2}+1\right)}
$$

Therefore,

$$
\int_{C_{R, r}} f(z) d z=I_{R, r}+\int_{S_{r}^{+}} f(z) d z+\int_{C_{R}^{+}} f(z) d z .
$$

For $R>2$ and $r<1$ we have

$$
\int_{C_{R, r}} f(z) d z=2 \pi i \operatorname{Res}(i)=-\frac{\pi}{2}(1+i)
$$

where we used that

$$
\operatorname{Res}(i)=\lim _{z \rightarrow i}(z-i) \frac{1}{(z-1)(z-i)(z+i)}=\lim _{z \rightarrow i} \frac{1}{(z-1)(z+i)}=\frac{1}{2 i(i-1)}=-\frac{1}{4 i}(1+i)
$$

At the limit $r \rightarrow 0^{+}$we have

$$
\lim _{r \rightarrow 0^{+}} \int_{S_{r}^{+}} f(z) d z=-\pi i \operatorname{Res}(1)=-\frac{\pi}{2} i
$$

where we used that

$$
\operatorname{Res}(1)=\lim _{z \rightarrow 1}(z-1) \frac{1}{(z-1)\left(z^{2}+1\right)}=\lim _{z \rightarrow 1} \frac{1}{z^{2}+1}=\frac{1}{2}
$$

Moreover, since the degree of the denominator is 3 and the degree of the numerator is 0 we have

$$
\lim _{R \rightarrow \infty} \int_{C_{r}^{+}} f(z) d z=0
$$

Then taking the limits $R \rightarrow \infty$ and $r \rightarrow 0^{+}$we get

$$
-\frac{\pi}{2}(1+i)=I-\frac{\pi}{2} i+0
$$

giving

$$
I=-\frac{\pi}{2}
$$

Question 2 (15 points)

Show that if f is analytic in the closed disk $|z| \leq 2$ and if $|f(z)|<1$ on the circle $|z|=1$, then the equation $f(z)=z^{n}$ has exactly n solutions (counting multiplicity) in the open disk $|z|<1$. Hint: Rouche's theorem; the conditions for applying the theorem must be explicitly stated and verified.

Solution

The functions $f(z)$ and z^{n} are both analytic on and inside the unit circle.
The number of zeros of z^{n} inside the unit circle, counting multiplicity, is $N_{0}\left(z^{n}\right)=n$.
Moreover, on the unit circle we have

$$
|-f(z)|<1=\left|z^{n}\right| .
$$

Therefore, applying Rouché's theorem we get

$$
N_{0}\left(z^{n}\right)=N_{0}\left(z^{n}-f(z)\right)=n
$$

which implies that the equation $z^{n}=f(z)$ has exactly n solutions (counting multiplicity) inside the unit circle.

Question 3 (15 points)

Represent the function

$$
f(z)=\frac{z+1}{z-1}
$$

(a) (8 points) as a Taylor series around 0 and find its radius of convergence;

Solution

$$
\begin{aligned}
\frac{z+1}{z-1} & =-(z+1)\left(1+z+z^{2}+z^{3}+z^{4}+\cdots\right) \\
& =-1-2 z-2 z^{2}-2 z^{3}-2 z^{4}-2 z^{5}-\cdots
\end{aligned}
$$

where we used the geometric series which converges for $|z|<1$. The only singularity of $(z+1) /(z-1)$ is at $z=1$ which is at a distance $|z|=1$ from 0 . Therefore, the radius of convergence is 1 .
(b) (7 points) as a Laurent series in the domain $|z|>1$.

Solution

Since $|z|>1$, that is $|1 / z|<1$, we have

$$
\frac{z+1}{z-1}=\frac{1+\frac{1}{z}}{1-\frac{1}{z}}=\left(1+\frac{1}{z}\right)\left(1+\frac{1}{z}+\frac{1}{z^{2}}+\frac{1}{z^{3}}+\cdots\right)
$$

Therefore,

$$
\frac{z+1}{z-1}=1+\frac{2}{z}+\frac{2}{z^{2}}+\frac{2}{z^{3}}+\frac{2}{z^{4}}+\frac{2}{z^{5}}+\cdots
$$

Question 4 (15 points)

At which points is the function

$$
f(z)=x^{2}+y^{2}+2 i x y
$$

differentiable? Compute the derivative of $f(z)$ at these points.

Solution

We check the partial derivatives, where we write $u(x, y)=x^{2}+y^{2}$ and $v(x, y)=2 x y$. We have

$$
\begin{array}{ll}
\frac{\partial u}{\partial x}=2 x, & \frac{\partial u}{\partial y}=2 y, \\
\frac{\partial v}{\partial x}=2 y, & \frac{\partial v}{\partial y}=2 x .
\end{array}
$$

All partial derivatives exist and are continuous for all $x+i y \in \mathbb{C}$. Then the Cauchy-Riemann equations give $2 x=2 x$ and $2 y=-2 y$, that is, $y=0$ and $x \in \mathbb{R}$.
The derivative is given by

$$
f^{\prime}(z)=\frac{\partial u}{\partial x}-i \frac{\partial u}{\partial y}=2 x-2 i y=2 x .
$$

Question 5 (15 points)

Consider the function

$$
f(z)=\frac{\sin z}{z^{2}} .
$$

(a) (6 points) Determine the singularities of $f(z)$ and their type (removable, pole, essential; if pole, specify the order).

Solution

The function has a singularity at $z=0$. The Taylor series for $\sin z$ is

$$
\sin z=z-\frac{1}{3!} z^{3}+\frac{1}{5!} z^{5}-\cdots,
$$

therefore,

$$
\frac{\sin z}{z^{2}}=\frac{1}{z}-\frac{1}{3!} z+\frac{1}{5!} z^{3}-\cdots .
$$

Therefore, $z=0$ is a pole of order 1 .
Alternatively, we notice that

$$
\lim _{z \rightarrow 0} z \frac{\sin z}{z^{2}}=1
$$

implying that $z=0$ is a pole of order 1 .
(b) (9 points) Show that $f(z)$ does not have an antiderivative in $\mathbb{C} \backslash\{0\}$. Hint: Compute the integral of f along the unit circle.

Solution

If a function has an antiderivative in a domain D then its integral over any closed contour in D must be 0 . We compute

$$
\int_{C} \frac{\sin z}{z^{2}} d z
$$

where C is the positively oriented unit circle. From the generalized Cauchy formula we
have

$$
\int_{C} \frac{\sin z}{z^{2}} d z=\left.2 \pi i(\sin z)^{\prime}\right|_{z=0}=2 \pi i \cos 0=2 \pi i
$$

Question 6 (15 points)

(a) (8 points) Prove that

$$
\cos z=\cos x \cosh y-i \sin x \sinh y,
$$

where $z=x+i y$.

Solution

We compute

$$
\begin{aligned}
\cos z & =\frac{1}{2}\left(e^{i z}+e^{-i z}\right) \\
& =\frac{1}{2}\left(e^{i x-y}+e^{-i x+y}\right) .
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
\cos x \cosh y-i \sin x \sinh y= & \frac{1}{2}\left(e^{i x}+e^{-i x}\right) \frac{1}{2}\left(e^{y}+e^{-y}\right)-i \frac{1}{2 i}\left(e^{i x}-e^{-i x}\right) \frac{1}{2}\left(e^{y}-e^{-y}\right) \\
= & \frac{1}{4}\left(e^{i x+y}+e^{i x-y}+e^{-i x+y}+e^{-i x-y}\right) \\
& \quad-\frac{1}{4}\left(e^{i x+y}-e^{i x-y}-e^{-i x+y}+e^{-i x-y}\right) \\
= & \frac{1}{2}\left(e^{i x-y}+e^{-i x+y}\right) .
\end{aligned}
$$

This proves the required relation.
(b) (7 points) Prove that the function

$$
u(x, y)=\cos x \cosh y
$$

is harmonic in \mathbb{R}^{2} and find a harmonic conjugate of $u(x, y)$.

Solution

The given function $u(x, y)$ is harmonic because it is the real part of the analytic function $\cos z$.
A harmonic conjugate for $u(x, y)$ is then the imaginary part of $\cos z$, that is,

$$
v(x, y)=-\sin x \sinh y .
$$

